

www.asmi.org glennf@asmi.org 205-918-2139

Biomechanical Analysis of Dr. Mike Marshall's Pitching Technique

June 27, 2008

<u>Methods</u>

Four pitchers taught by Dr. Mike Marshall were tested in the James R. Andrews Biomechanics Lab at the American Sports Medicine Institute. After warming up as wanted, each pitcher was tested pitching at full effort. Kinematic and kinetic data were then computed, using equations previously published by ASMI (see references).

A biomechanical evaluation is attached for each of the four subjects. In each report, the pitcher's data for the maxline fastball, torque fastball, dropout, screwball and/or curve are compared to traditional fastball mechanics thrown by healthy, elite pitchers previously tested at ASMI.

The hypothesis proposed was that pitching a Marshall-style fastball can produce comparable ball velocity as a traditional fastball, but with less risk of injury to the shoulder and elbow. To test this hypothesis, the torque fastball data for XXXXXXxxx, YYYYyyyyyyyy, and ZZZZzzzzz were grouped together and compared to traditional pitching data. WWWWwwwww was not included, as he had less ball velocity than the other three subjects, and his kinematics did not match well the data of the other three. The torque fastball was used, as it was the fastest pitch thrown by the Marshall-style pitchers. The "torque group" was compared to two groups of subjects previously tested at ASMI – an elite group, and a matched group. The elite group was comprised of healthy professional and collegiate pitchers who threw at least 85 mph during testing. The matched group was made up of healthy pitchers with similar height, weight, and fastball velocity as the torque group.

<u>Results</u>

Kinematic and kinetic data for the torque group and elite group are compared in Table 1 below. "Low" indicates the mean minus one standard deviation (Mean-SD) for the elite pitchers, and "High" indicates the mean plus one standard deviation (Mean+SD) for the elite pitchers. A red "X" indicates that the mean value for the torque group was either below the Low or above the High value for the elite range. For reference, the "A, B, C,..." indicate where a parameter appears on the individual evaluations.

The torque group produced significantly less ball velocity than the elite group. The height and weight of the torque group were within the elite group range. As expected, there were numerous kinematic differences between the torque and elite groups. This included significantly less knee lift and shorter stride for the torque group. The front foot landed "closed" (to the thirdbase side, for a righty) for traditional pitching, but open for the torque group. The torque group generated significantly less (and later) trunk rotational velocity, which seems consistent with the teaching of the style. The torque group also generated significantly less external rotation of the throwing shoulder. At the instant of ball release, the torque group had significantly less forward trunk tilt and more sideways trunk tilt than traditional pitchers. Shoulder abduction was in the elite range. This shoulder abduction, coupled with greater sideways trunk tilt (towards the glove side), created a more "over-the-top" release point for the torque fastball, compared to the elite pitchers. Kinetic values for the torque group were within the normal ranges for the elite traditional pitchers.

VARIABLE	TORQUE GROUP				I	ELITE GROU	P
		MEA	N VALUE		LOW		HIGH
Velocity		77	MPH	X	85	to	89
Height		75	Inchos		72	to	77
Neight		73	Doundo	_	105	10	
weight		221	Pounds	_	185	to	233
Humerus length		38	Cm	_	37	to	41
Radius length		30	Cm		28	to	31
MAXIMUM KNEE HEIGHT							
Maximum Knee Height		24	% height	X	60	to	68
Pelvic Drift	Α	11	Inches		6	to	9
Head Roll		-2	Degrees	X	11	to	34
Hoad Ditch		-13	Degrees	X	-11	to	•
neau Filch		13	Degrees	~		10	8

Table 1. Comparison between Marshall pitchers and elite traditional pitchers

EO	\mathbf{T}	CO	NIT	лст
гυ	υı	υJ	'IN I /	ACI

Stride Length Ratio	В	62	% height
Lead Foot Position	D	-3	Inches
Lead Foot Angle	E	9	Degrees
Knee Flexion	С	43	Degrees
Pelvis Rotation	F	12	Degrees
Trunk Separation	G	-36	Degrees
Side Trunk Tilt	H	-9	Degrees
Throwing Shoulder Abduction	I	107	degrees
Throwing Shoulder Horizontal Abduction	L	-2	degrees
Throwing Shoulder External Rotation	К	52	degrees
Throwing Elbow Flexion	J	62	degrees

87
13
26
52
41
-38 X
12
103 X
34
79
107

ARM COCKING

Maximum Pelvis Rotation Velocity	М	567	degrees / sec
%tMPRV	Ν	56	% time
Maximum Lateral Trunk Flexion Velocity		323	degrees / sec
%tMLTFV		59	% time
Maximum Upper Trunk Rotation Velocity	0	958	degrees / sec
%tMUTRV	Р	75	% time
Maximum Trunk Separation Velocity		368	degrees / sec
%tMTSV		95	% time
Maximum Throwing Shoulder External			
Rotation Angular Velocity		405	degrees / sec

MAXIMUM EXTERNAL ROTATION

Q	162	degrees
R	15	degrees
S	116	degrees
	69	% time
	Q R S	Q 162 R 15 S 116 69

ARM ACCELERATION

w	16	m / s ²
Х	59	% time
Т	7899	degrees / sec
υ	2509	degrees / sec
v	94	% time
	W X T U V	W 16 X 59 T 7899 U 2509 V 94

BALL RELEASE

Lead Shank Angle	AB	9	degrees
Lead Knee Flexion	Ζ	21	degrees
Lead Hip Flexion	Y	119	degrees
Forward Trunk Tilt	AC	22	degrees
Side Trunk Tilt	AD	42	degrees

	522	to	675	
ſ	17	to	41	X
	249	to	374	
ſ	19	to	48	X
ſ	1075	to	1223	
ſ	39	to	58	X
ſ	427	to	648	
	36	to	74	Х
	1291	to	1866	

X

X

Х

Х

х

ĸ	173	to	191	
	9	to	22	
	88	to	116	Х
	42	to	69	Х

22	to	38
30	to	72
6558	to	8536
2146	to	2680
89	to	94

8	to	22	
20	to	46	
89	to	109	Х
29	to	42	
14	to	31	Х

(Average) Throwing Shoulder Abduction	AE	93	degrees		87	to	103
Throwing Elbow Flexion	AF	20	degrees		19	to	28
MAXIMUM INTERNAL ROTATION							
Lead Knee Flexion	AH	5	degrees	X	11	to	36
Forward Trunk Tilt	AG	28	degrees	X	40	to	57
Maximum Throwing Elbow Flexion		18	degrees		16	to	24

FORCES		
Maximum Throwing Shoulder Anterior		
Force	364	Newtons
Maximum Throwing Shoulder Proximal		
Force	1264	Newtons
Maximum Throwing Elbow Proximal Force	1150	Newtons

267	to	403
1094	to	1436
1029	to	1319

	TORQUES			_			
I	Maximum Throwing Shoulder Horizontal		Newton-				
	Adduction Torque	128	meters		87	to	135
	Maximum Throwing Shoulder Internal		Newton-				
	Rotation Torque	106	meters		80	to	116
I			Newton-				
	Maximum Throwing Elbow Varus Torque	108	meters		80	to	113
I			Newton-				
l	Maximum Throwing Elbow Flexion Torque	49	meters		38	to	64

Kinematic and kinetic data for the Marshall pitchers are compared to a matched-group of traditional pitchers in Table 2 below. In this table, "High" and "Low" represent the mean +/- one standard deviation for the matched-group. The height, weight, and ball velocity of the torque group were within the matched-group range. There were numerous kinematic differences between the torque group and matched-group. In general, these were the same kinematic differences as seen between the torque and elite groups. Kinetic values for the torque group were above the normal ranges for the matched-group.

Table 2. Comparison between Marshall pitchers and a matched-group of traditional pitchers

VARIABLE	TORQUE GROUP		МАТСН	IED GRO	OUP
	MEAN VALUE		LOW		HIGH
Velocity	75 MPH		74	to	77
ANTHROPOMETRICS					

Height	75	inches	75	to	77	
Weight	221	pounds	171	to	222	
Humerus length	38	cm	36	to	39	
Radius length	30	cm	28	to	30	Χ

KINEMATICS

MAXIMUM KNEE HEIGHT

Maximum Knee Height		24	% height
Pelvic Drift	Α	11	inches
Head Roll		-2	degrees
Head Pitch		-13	degrees
Head Yaw		-22	degrees

n/a	to	n/a
n/a	to	n/a

FOOT CONTACT			
Stride Length Ratio	В	62	% height
Lead Foot Position	D	-3	inches
Lead Foot Angle	Е	9	degrees
Knee Flexion	С	43	degrees
Pelvis Rotation	F	12	degrees
Trunk Separation	G	-36	degrees
Side Trunk Tilt	Н	-9	degrees
Throwing Shoulder Abduction	Ι	107	degrees
Throwing Shoulder Horizontal Abduction	L	-2	degrees
Throwing Shoulder External Rotation	K	52	degrees
Throwing Elbow Flexion	J	62	degrees

73 to 82 8 to 11 10 29 to 39 52 to 7 to 30 -55 -32 to -2 to 16 95 73 to 10 34 to 58 -4 to 64 to 110

Х

Χ

Χ

Χ

Х

Χ

Χ

ARM COCKING

Maximum Pelvis Rotation Velocity	Μ	567	degrees / sec
%tMPRV	Ν	56	% time
Maximum Lateral Trunk Flexion Velocity		323	degrees / sec
%tMLTFV		59	% time
Maximum Upper Trunk Rotation			
Velocity	0	958	degrees / sec
%tMUTRV	Р	75	% time
Maximum Trunk Separation Velocity		368	degrees / sec
%tMTSV		95	% time
Maximum Throwing Shoulder External			
Rotation Angular Velocity		405	degrees / sec

	492	to	572	
	20	to	50	Χ
	226	to	338	
	20	to	70	
(1003	to	1113	
	40	to	63	Χ
(395	to	597	
	47	to	78	X
(1208	to	1852	

MAXIMUM EXTERNAL ROTATION

Maximum Throwing Shoulder External			
Rotation	Q	162	degrees
Maximum Throwing Shoulder Horizontal			
Adduction	R	15	degrees
Throwing Elbow Flexion	S	116	degrees
%tEA		69	% time

	176	to	162
	29	to	10
X	115	to	80
	72	to	38

ARM ACCELERATION

W	16	m / s^2
Χ	59	% time
Т	7899	degrees / sec
U	2509	degrees / sec
V	94	% time
	W X T U V	W 16 X 59 T 7899 U 2509 V 94

<u>.</u> Г	10		• •	
X	18	to	30	
	27	to	62	
	5354	to	6393	X
	1722	to	2235	X
	93	to	95	
_				

BALL RELEASE

Lead Shank Angle	AB	9	degrees
Lead Knee Flexion	Z	21	degrees
Lead Hip Flexion	Y	119	degrees
Forward Trunk Tilt	AC	22	degrees
Side Trunk Tilt	AD	42	degrees
(Average) Throwing Shoulder Abduction	AE	93	degrees
Throwing Elbow Flexion	AF	20	degrees
MAXIMUM INTERNAL ROTATION			
Lead Knee Flexion	AH	5	degrees
Forward Trunk Tilt	AG	28	degrees
Maximum Throwing Elbow Flexion		18	degrees

	0	to	12	
X	27	to	61	
	88	to	126	
	21	to	37	
	16	to	28	X
	87	to	106	
x	26	to	32	-
, -	21	4.5	51	_
<u>^</u> –	21	to	51	_
X	31	to	53	
X	21	to	27	

KINETICS

FORCES

Maximum Throwing Shoulder Anterior		
Force	364	Newtons
Maximum Throwing Shoulder Proximal		
Force	1264	Newtons
Maximum Throwing Elbow Proximal		
Force	1150	Newtons

to	314	Χ
to	1043	X
to	980	Χ
	to to to	to 314 to 1043 to 980

TOROUES

IORQUED			_	
Maximum Throwing Shoulder Horizontal		Newton-		
Adduction Torque	128	meters		61
Maximum Throwing Shoulder Internal		Newton-		
Rotation Torque	106	meters		53
		Newton-		
Maximum Throwing Elbow Varus Torque	108	meters		52
Maximum Throwing Elbow Flexion		Newton-		
Torque	49	meters		29

61	to	99	X
53	to	82	Χ
52	to	81	X

to

49

Discussion

The data did not support the hypothesis that the Marshall style of pitching produces less risk of injury but with comparable ball velocity as traditional pitching. While the current study provides no direct measurement of injury risk, the biomechanical data do provide shoulder and elbow kinetic parameters. Cadaveric and mathematical modeling have linked total joint force and torque to loads on individual tissues, like rotator cuff tendons and ulnar collateral ligament (see references). Thus, elbow varus torque coupled with elbow flexion has been correlated with tension in the UCL. Shoulder internal rotation torque coupled with shoulder external rotation angle has been correlated with SLAP tears and internal impingement of the infraspinatus in the shoulder capsule. Shoulder proximal force has been linked to rotator cuff tensile tears and SLAP tears.

Compared to elite traditional pitchers, the torque fastball pitchers produced similar shoulder and elbow torques, but significantly less ball velocity. Compared to a matched traditional group, the torque fastball group produced similar ball velocity, but required significantly greater shoulder and elbow force and torque.

Accuracy was also an issue. Collectively, the three skilled Marshall-style pitchers threw only one-third (9 out of 27) of their maxline fastballs for strikes, and about one-fourth (5 out of 21) of their torque fastballs for strikes.

While the current study does provide some insight into the performance and safety about various styles of pitching, future research would also be helpful. Biomechanical testing of a larger sample of Marshall-style pitchers would be valuable, as would long-term outcomes of performance and injury compared between Marshall-style and traditional pitchers.

References:

Dun S, Loftice J, Fleisig GS, Kingsley D, Andrews JR. A Biomechanical Comparison of Youth Baseball Pitches: Is the Curveball Potentially Harmful? *Am J Sports Med* 36(4):686-692, 2008. Dun S, Kingsley D, Fleisig GS, Loftice J, Andrews JR. Biomechanical comparison of the fastball from windup and the fastball from stretch in professional baseball pitchers. *Am J Sports Med* 36(1):137-41, 2008.

Dun S, Fleisig GS, Loftice J, Kingsley D, Andrews JR. The relationship between age and baseball pitching kinematics in professional baseball pitchers. *Journal of Biomechanics* 40:265-270, 2007.

Escamilla RF, Barrentine SW, Fleisig GS, Zheng N, Takada Y, Kingsley D, Andrews JR. Pitching biomechanics as a pitcher approaches muscular fatigue during a simulated baseball game. *Am J Sports Med* 35:23-33, 2007.

Fleisig GS, Kingsley DS, Loftice JW, Dinnen K, Ranganathan R, Dun S, Escamilla RF, Andrews JR. Kinetic comparison among the fastball, curveball, change-up, and slider in collegiate baseball pitchers. *The American Journal of Sports Medicine* 34(3):423-430, 2006.

Zheng N, Fleisig GS, Barrentine S, Andrews JR. Biomechanics of Pitching. In Hung GK, Pallis JM (eds), <u>Biomedical Engineering Principles in Sports</u>, Kluwer Academic / Plenum Publishers, New York, pp 209-256, 2004.

Fleisig GS, Barrentine SW, Zheng N, Escamilla RF, Andrews JR. Kinematic and kinetic comparison of baseball pitching among various levels of development. *Journal of Biomechanics* 32(12):1371-1375, 1999.

Zheng N, Fleisig GS, Andrews JR. Biomechanics and injuries of the shoulder during throwing. *Athletic Therapy Today* 4(4):6-10, 1999.

Escamilla RF, Fleisig GS, Barrentine SW, Zheng N, Andrews JR. Kinematic comparisons of throwing different types of baseball pitches. *Journal of Applied Biomechanics* 14(1):1-23, 1998.

Fleisig GS, Escamilla RF, Andrews JR, Matsuo T, Satterwhite Y, Barrentine SW. Kinematic and kinetic comparison between baseball pitching and football passing. *Journal of Applied Biomechanics* 12(2):207-224, 1996.

Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF. Kinetics of baseball pitching with implications about injury mechanisms. *The American Journal of Sports Medicine* 23(2):233-239, 1995.